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Win some, lose some: enthalpy-entropy compensation in 
weak intermolecular interactions 

Enthalpy-entropy compensation is a general feature of many chemical reactions 
and processes in biological systems, but its origin has remained obscure. A simple 

thermodynamic argument suggests that enthalpy-entropy compensation is a general 
property of weak intermolecular interactions, and that the two contributions to the 

free energy should nearly balance out for a hydrogen bond at 300 K. 
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Enthalpy-entropy compensation has been discussed 
under several names (for example, isokinetic or isoequi- 
librium relationships) and from many points of view in 
countless papers over the years.The term refers essentially 
to the specific linear relationship found to exist between 
the change in enthalpy and the change in entropy in 
many biological processes, especially those occurring in 
aqueous solution and involving changes in hydrogen 
bonding [l-6]. For example, standard enthalpy and 
entropy changes in the unfolding of proteins are of the 
same sign and make approximately equal contributions 
(of opposite sign) to the free energy change, so that AG” 
is close to zero [ 11. The small AGo means that the process 
is never far from equilibrium, even though the separate 
enthalpy and entropy terms may be substantial. Similar 
considerations apply to many other biological processes. 
Searle and Williams [7] have discussed the relevance of 
enthalpy-entropy compensation to the binding of ago”- 
ists versus antagonists to a common receptor site. They 
suggest that binding of agonists is mainly enthalpy driven 
while that of antagonists is mostly entropy driven, as has 
indeed been shown experimentally to be the case for the 
Al adenosine receptor [XI. Recently, the topic is attract- 
ing more attention in the contexts of supramolecular 
host-guest and biomolecular drug-receptor association 
reactions 17, 9-l 11. Although enthalpy-entropy compen- 

sation has in the past been regarded as a ‘ubiquitous prop- 
erty of water’ [I], it appears to be a property of all weak 
intermolecular interactions, of which hydrogen bonding 
in aqueous solution is merely the one most frequently 
encountered in biochemical and supramolecular reac- 
tiom. In this article, I u\e a simple statistical mechanical 
model to derive a semi-quantitative estimate for 
enthalpy-entropy compensation in the interaction of two 
molecules. This model suggests that the opposite 
enthalpic and entropic contributions to the free energy 
nearly balance out around physiological temperature for 
an enthalpic stabilization of =5 kcal molP’.This is approx- 
imately the energ? of a hydrogen bond, which may help 
to explain why such compensation is so prevalent in 
biological systems. 

The trade-off between enthalpic and entropic terms is 
basic to thermodynamics, as expressed in the two terms 

of the free energy expression: G = H - TS.As H becomes 
more negative (stronger bonding), S tends to decrease due 
to the tightening up of the system. As H becomes less 
negative (weaker bonding), S tends to increase as the 
system becomes increasingly disordered. 

Some examples of enthalpy-entropy compensation may 
appear to be trivial: for instance, the relationship between 
the enthalpy and entropy changes that occur on melting a 
solid. Here the entropy change on fusion AS, can be 
defined (and is often experimentally determined) as 
AH,/T,; since the free ener<q change AG, on melting 
must be zero. On a rather different plane, if the equilib- 
rium constant for a particular type of association is 
required to lie within a given range, for reason5 of prac- 
tical or biochemical necessity, it follows that AH” - TAS” 
must be approximately constant at the temperature of 
interest. For this to be true, any change in AH” must be 
balanced by an equivalent change in TAP, and indeed 
this is what is experimentally observed. Finally, the experi- 
mental demonstration of enthalp)T-entropy compensation 
for a particular host-guest association reaction in different 
solvents [ 121 would seem to call for explanation. 

In a recent paper Searle, Westwell and Williams [I31 
presented a curve derived from qualitative thermo- 
dynamic considerations, showing the general form of 
the exothermicity of an association reaction (-AH()) as 
a function of the entropic cost (-398AS”). They COTI- 
sider the association of two molecules A and H to yield 
a complex A-B. For very strong A-B association (e.g. a 
covalent bond between the partners), the change m 
standard free energy, AG(), is clearly dominated by the 
enthalpic term, AHO. Th- _. L associated entropy change, 
AS0, reaches a limit. which can be said to correspond to 
the loss of one mole of translational and rotational 
freedom per mole ofA and B, at least in the gas phase. 
The entropy change for an association in solution is not 
so easy to quantify, but at any rate there xvi11 be a large 
decrease due to loss of independent motion of the two 
molecules. For weaker bonding this loss Mill be partially 
compensated by contributions from translational and 
rotational vibrations of the A and B components within 
the A-B complex. In the limit of zero bonding, these 
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Box 1. Contributions to the entropy of a liquid. 
One should perhaps avoid talking about separate trans- 
lational and rotational contributions to the entropy of a 
liquid (and, even more so, of a solution). Although these 
contributions can be calculated by standard statistical 
mechanical procedures for the ideal gas state (and in 
good approximation for real gases), they can be neither 
measured nor calculated for a liquid or a solution. For 
example, for water vapor the calculated translational and 
rotational entropies at 298 K and 1 atm pressure are 
34.61 and 10.48 eu (1 eu = 1 cal mol-’ K-’ = 4.1 X4 J 
mol-’ K-l), totalling 45.09 eu. As the internal vibra- 
tional contributions are essentially zero (v = 3652, 1592 
and 3756 cm-‘), this value is to be compared with the 
calorimetric value calculated using the Third Law, 
44.28 eu. Indeed, it was the small discrepancy between 
these two values that led to the realization that ice I, the 
normal crystalline form of ice, is not perfectly ordered 
at 0 K (for further details see 1171). Thus the trans- 
lational and rotational components for water vapor can 
be calculated with confidence. For the liquid state, 
however, there is no way of separating the standard 
entropy (at 298 K) of 16.7 eu into translational and 
rotational components, even though the internal vibra- 
tional contribution is negligible at this temperature. At 
best, the entropy of a liquid can be regarded as an upper 
limit for the combined ‘translational and rotational 
entropy’ - what one might call the ‘rigid-molecule 
entropy’. For solutions, estimates of the separate entropy 
contributions involve a change in standard state (from 
the pure substance, with unit activity, to a solution of, 
say, 1 M  concentration, in which the activity is depen- 
dent on assumptions about ideality) and become even 
more perplexing. 

vibrational degrees of freedom will become indistin- 
guishable from the lost translational and rotational ones 
(see the discussion in Box 1). 

How can we estimate the contributions of entropy and 
enthalpy to the free energy of association at varying bond 
strengths? Suppose that the interaction between the A 
and B components in the A-B complex is described by a 
potential enersv function of the usual kind (Fig. 1). For a 
deep well, corresponding to a strong bond with large 
enthalpy change upon association, the vibrational energy 
levels of the systeni are widely spaced and the vibrational 
entropy is small; on the other hand, a shallow well corrc- 
sponds to many closely-spaced vibrational levels and 
hence to a larger vibrational entropy. 

These qualitative considerations do not help us much 
with the intermediate situation where enthalpic and 
entropic terms approach each other in magnitude. To go 
further, we have to introduce some numbers and make a 
few assumptions.The enthalpic contribution is straight- 
forward, but to estimate the entropic contribution 
we need to first calculate the value of the vibrational 

frequency. v/, lvhich depends in turn on the magnitude 
of the quadratic force constant, .f. For any ‘rcason,lble’ 
function the quadratic force constant jof the equilib- 
rium structure (the curvature of the function at the 
equilibrium position) is ,lpproximately proportional to 
the dissociation energy I>C,.This proportionality is exact 
for the Morse potential, a mathematical rcpresentCltion 
of the potential ener&y curve in Figure 1 : 

v(r--TI,) = I)<, { e-2w-I-,,) ~ 2 c-uw-,~) ; ( f= ‘lo )<, 

(where V is the potential energy as ‘1 function of the 
interatomic distance r, r. is the equilibriunl distance and 
U is a constant), a11d for the inverse power potential: 

(where I and III are constants). For a harmonic oscillator, 
the frequency v of the A-13 stretching vibration is 
v =(f/p)“‘/2n where p is the reduced I~JSS of the 
cystcnl. In other words, for a given mass, the frequency v 
increases as the square root of the force constant and 
hence as the square root of the dicsociation energy Do. 
Given v, we can then use the standard statistical 
mechanical relationship 1141: 

where s = hv/kT = 1 .-I39 v/T (v in cn-‘,T in K; I< is the 
gas constant), to estimate the corresponding contribution 
to the vibrational entropy at any temperature (in the\r 
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Interatomic distance, r (A) 

Fig. 1. The energy of a hydrogen bond depends on the interatomic 
distance. The curve shows a typical potential energy curve for a 
O-H...0 hydrogen bond; vertical scale, energy in kcal mol-‘; 
horizontal scale, H...O distance in A. As the interatomic distance 
decreases, the bond becomes stronger, but as the atoms approach 
each other too closely, repulsion forces take over. 
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Frequency of vibration, v (cm-11 

Fig. 2. As the frequency v increases, the vibrational entropy SVib 
decreases. The curve shows the relationship between Y and S,,,, 
at 100 K. Both v and S,,,, are dependent  on the strength of the 
bond; for strong bonds, v is high and S,,,, is small. 

energ units, 1  kcnl mol- =  350 cum’). Incidentally, this 
relationship between vibration4 frequency and thermo- 
dynamics (or rather a  closely connected one involving the 
heat capacity) was first derived by Einstein in his treatment 
of d  qumtized vibration [ 151. 

A plot of Sv,,, as  ;I function of v at T = 300 K is shown 
in Figure 2. At the frequencies typical of stretching and 
bending vibrations of covalent bonds (v > lOOO cn~‘) 
the entropy is negligibly small. whereas for lower fre- 
quenciec the vibrational entropy increases rapidly.What 
can \vc expect for the entropy associated with a  typical 
non-covalent irlt~riiioleculal- interaction, for example a  
11yhge11 bond? 

As a  specific example wc take a  water molec~~lc (A) 
bonded to a  very large ~nolecule (B) by a  hydrogen bond 
with discocidtion energ!g Ilo = -AHO = 5  kcnl rn~~l-~.Thc 
Morse potential with 13  = 2  A-’ , a  typical value, gives 
/‘= 40  kc‘11 nlol-’ ii-‘; the inverse power potential with 

‘111 = 6. 1  = 13. r. =  2.8 A, gives -f- 45  kcal mol- A-‘. 
W ithin the ~~pproslmntionc of the model, the twc) rsti- 
mates are equal, and  wc adopt  the lower value.Taking the 
reduced mw p  of the water molecule as its actual mass, 
1  X g/(6.023 M 1 O ”), we obtain v = 160 cnP’.The abow 
fo1-11lLl13 for S&, then gives the value 2.5 cal mol-’ K-’ 
for the entropic contribution of the A-B stretching 
vlbmtion ‘it 300  K. 

In addit ion to the stretching vibration, there are two other 
trmslntional vibrations and three rotational ones to be  
considcred.Their entropy contributions are more difficult 
to estimate but should not be  too different from the one 
\VC have. W e  take them to be  equal  and  arrive at the esti- 
lmte of about  15  cal 1no1~’ K-’ (6SV,,,, as  there are six 
vibrCltional components)  for the total vibrational entropy 
of a  water n~olccule bonded to its large but otherwise 
indefinite partner. This estimate is certainly very rough, 
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but it is of the right order of magnitude.The rntropy asso- 
ciated with each immobilized water molecule ill a  
hydrated crystal is approsimatrly ccmtant ‘it C~Lmut 
10  cal molP K-’ [ 161, and  the standard entropy of liquid 
\vater is 16.7 cal mole KP’. 

Our model  systenl thus gives an  estiniatrd contribution, 
“TS,,,,,, of about  4.i km1 mol? to thr it-w enerh? dt 
300  K. Since the cnthalpic st,lbilization xva\ munled to 
be  5  kcal moP’, the entropic contribution just about  b& 
antes out the enthalpic term at this tcmpmlturc. The 
general  relationship between 6TSV,,, at 300  K and the 
dissociation energy l>o is sho\\:n in Figure 3. 

There is no  quest ion that the abovr derivCltion can bc 
criticized 011 sever-nl counts: the Morse function (or my 
other dpplicable one) is far from harmonic and heiicc 
the amunpt ions made in estimating the frequent), v 
from the quadratic force constmt .f and  in cstinlating 
S,.I,, from the f i-equency v are unjustified; so is the 
assuniptioii that the six vibrational degrees of ti ieedoni 
all contribute the same amount  to the total vibrational 
entropy. Nevcrth~less, the model  portray\ in a  semi- 
quantitative \\:a); essential features of eiitli”lp)‘-“itr”pv 
compensat ion. In particulx, it sho\vs th,it this is not ;i 
special feature of , iqurous solutions. but is an  dlinost 
unavoidable char,lcterictic of weak internctions in 

6TS,,t, (kcal mol-1 I 

Fig. 3. The enthalpy-entropy compensat ion curve at T  =  WI  K for 
a  simple association process, A + B e  A-B. The value of 

6T%,ts the entropic contribution to the free energy, estimated 
from our simple model,  is plotted against the dissociation 
enthalpy D, =  -hH”, both expressed in kcal rnol~‘. For strong 
covalent bonds, enthalpy predominates, while for very weak asso- 
ciations, entropy predominates. For the intermediate case where 
D,, =  5  kcal mol-‘, the typical energy of a  hydrogen bond, the 
value of D,, is nearly equal  and opposite to the entropic term. The 
curve is qualitatively similar to that shown in Figure 2  of 1131. 
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general. Since enthalpy-entropy compensation is almost 
complete for associations involving water at around 
300 K, it is hardly surprising that it is ubiquitous in the 
chemistry of living systems. 
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